— 2004 IMF Review

Novel Modified Zeolites for Energy-Efficient Hydrocarbon Separations

Gary Gray

<u>Tina M. Nenoff</u>, Mutlu Ulutagay-Kartin, Marcus G. Martin Richard D. Noble, Manuel Arruebo

June 23, 2004

Thomas M. Anderson

— Agenda

- Team Members
- Background
- Project
 - Description and Goals
 - Milestones
 - Funding
 - Benefits
- Technical
- Summary

— Research Team

Sandia National Laboratories

Tina M. Nenoff Mutlu Ulutagay-Kartin Marcus G. Martin

University of Colorado Richard D. Noble Manuel Arruebo

Goodyear ChemicalGary Gray

Burns & McDonnellTom Anderson

Synthesis Characterization Molecular Modeling

Pilot-Plant Testing

Economic Analysis

—Background/Business Case

Objective: Reduced Energy Consumption Using Membranes

Proposed Isoprene Monomer Technology

M = Membrane Location

— DOE/IMF Project Description & Goals

Description

Create materials for Energy Efficient HC separations

- Scientific focus on surface modified zeolites
- Enrichment / separation of isoprene from C5 stream
- Separations to provide basis of application toward other energyintensive C2-C5 separation processes

Goals

- Develop new membrane materials or separation-based adsorbents *via* modification of commercially-available zeolites
- Establish zeolite structure-property models for this technology & others
- Decrease energy consumption in the chemical & petroleum industries by employing these new & improved materials

—Goodyear/Sandia/UC Project Milestones

Milestones

Yr1: Zeolite Modification and testing; Go/No Go Initial Economic Analysis

Yr2: Selection of "best" modified zeolite through characterization and testing; modification optimization

Yr3: Pilot Plant testing, material modification; In-depth economic calculations; Engineering Analysis

— DOE/OIT/IMF Project Funding

"Novel Modified Zeolites for Energy-Efficient Hydrocarbon Separations"

Collaborative Research

238K/yr OIT/IMF "Direct to SNL"188K/yr Goodyear "In-Kind"120K/16 mo. Univ, of Colorado via SNL10K/yr Burns & McDonnell "In-Kind"

\$1.3M / 3yr program (FY02-04) 50% "in-kind" industry funding, commenced 4/23/2002.

Potential Benefits to Goodyear: Energy Savings

Need: Process
Improvement for
Isoprene Separation

Current Technology

Proposed Technology

Adsorption or Membrane Separation

12 % Reduction in Energy

Energy Intensive

Less Energy Intensive

— Potential Energy Benefits to U.S. Chemical Industry

- Goodyear is the domestic leader in isoprene production (60%)
- Economic Modeling from Burns & McDonnell shows reduction (12%) in Goodyear's energy consumption using modified Zeolites (membranes)
- Extrapolation to C₂-C₅ industries predicts 39 Trillion BTU's savings

		Btu/yr.,	2003	
		Trillion	Billion lbs.	Btu/lb
Ethylene*-	C2	247	61	4,058
Propylene*-	C3	53	39	1,359
Butadiene*-	C4	27	5	5,366
(Isoprene-	C5		0.4	>6,000)

Total

12 % Reduction

39 Trillion Btu's

Source: CMR 2003 & DOE/OIT Energy & Environ. Profile 2002

^{*} Btu/yr assumes cracking and distillation only. Associated downstream processes ignored

— Technical Section: Previous Technology Review

- Current technology energy intensive fractional and extractive distillation
- Past patent literature shows the use of activated carbon/mole sieves technology* but does not have zeolite pore selectivity properties
- Other unmodified zeolite membranes rapidly deactivate from olefin & diolefin exposure

^{*} US Patent Nos. 4,570,029, Kulprathipanja, S., "Process for Separating Isoprene," 1986, UOP Inc.; 3,596,436 Dassese, P., Solvay & Cie.

— Technical Section: Separations Methodology

Sandia IP for Modified Zeolite Technology, combined leads to *enhanced* HC selectivity:

- 1) Molecular Sieving (pore size)
- 2) Adsorption Modification (surface carbonization + acidity/reactivity)
- 3) Deactivation Stabilized (high temp; multiple cycles)

—Technical Section - Zeolites for Separations

	Relative acidity	Pore diameter (Å)
Zeolite β	high	6.6 x 7.7, 5.6
Zeolite-Y	medium-high	7.4
Zeolite-L	low	7.1
ZSM-5	high	5.1 x 5.5, 5.3 x 5.6

Zeolite-β
12 MR (3-D)
straight pores

12 MR (3-D, cages)
intersecting straight pores

Zeolite-Y

12 MR (1-D) straight pores

Zeolite-L

10 MR (3-D)
Intersecting straight /
sinusoidal pores

ZSM-5

—Technical Section – General Approach for Synthesis and Modification of Zeolites

- Preparation of Zeolites: The zeolite membranes are synthesized hydrothermally using the secondary (seeded) growth methods. The bulk zeolites are regenerated at high temperatures to remove ancillary pore-blocking molecules.
- Bulk Carbonization: The regenerated zeolites are carbonized w/hydrocarbons. The hydrocarbon type/mixture, concentration, flow rate, exposure time, and temperature are the variables for the modification process.
- Characterization: The effect of bulk carbonization on the pore size reduction and the adsorptivity of the zeolites are assessed with pore size measurements, via BET, and temperature-programmed desorption experiments, via NH₃-TPD, respectively.
- Separation Experiments: The carbonized zeolites and zeolite membranes are used for separation of n-pentane/i-pentane from a hydrocarbon C5 mixture at Goodyear.

— Technical Section: In-house Sandia Reactor

— Technical Section: Characterization Methods

SEM

BET

Two-Theta (deg)

NH₃-TPD

Technical Section: Bulk Experimental Results

screening experiments

— Technical Section: Separation Results of Bulk Modified Zeolites at Room Temp.

— Technical Section: Goodyear Separation Unit

Retentate

Syringe Pump to Zeolite
Feed Hydrocarbons Membrane

Helium sweep

On-line GC

Separation Performance

MFC

— Technical Section: Membrane Development

- MFI and FAU type membranes have been produced
- Surface modification of the supported membranes are under way

Crystalline Zeolite Membrane Layer (Selectively allows only specified Molecules to pass through)

Support (allows all molecules to pass)

— Technical Section: Economic Calculations Based on Membrane Separation Results

Separation	% isoprene	% Energy
Performance	enrichment	Savings
Base	0	θ
Demonstrated	0.6	1
Best case to date	3.0	6
Goal	6.7	12

Realistic and possible!

SINCE 1898

— Technical Section: Possible Module Design

Enhanced Selectivity: Molecular Sieving + Adsorption

— Summary: CRADA 1640.01 and IMF FY02

- New work to further enhance the fundamental knowledge and skills for isoprene purification for bulk and membranes
- Economic feasibility studies completed; point to attainable and realistic goals
- Bulk modification and adsorption studies plus initial membrane results show enrichment of isoprene from isoprene/pentane mixture
- Modification of of ZSM5 tubular supported membranes underway
- Additional industrial partner for commercialization (Pall Corp.) identified

— Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under Contract DE-AC04-94-AL85000.

Further Reading:

OFFICE OF INDUSTRIAL TECHNOLOGIES

http://www.oit.doe.gov/imf/factsheets/goodyr_zeolites.pdf

